Biomechanics

Silhouette of a man walking with arrows and angles demonstrating movement features that can be extracted, including gait speed, foot angle, stride length, and arm swing velocity.

Biomechanics plays a critical role in our research as it applies principles from physics and engineering to understand human movement. Principles of human movement science are applied to analyze detailed kinematic data collected using wearable inertial measurement devices (accelerometers and gyroscopes). Real-time, continuous data collection with millisecond resolution allows for the detection of subtle changes in motor behavior and thereby the early detection of motor symptom progression.  

Publications

Sotirakis, C., Su, Z., Brzezicki, M. A., Conway, N., Tarassenko, L., FitzGerald, J. J., & Antoniades, C. A. (2023). Identification of motor progression in Parkinson’s disease using wearable sensors and machine learning. Npj Parkinson’s Disease, 9(1), 1–8. https://doi.org/10.1038/s41531-023-00581-2

Brzezicki, M. A., Conway, N., Sotirakis, C., FitzGerald, J. J., & Antoniades, C. A. (2023). Antiparkinsonian medication masks motor signal progression in de novo patients. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16415

Sotirakis, C., Conway, N., Su, Z., Villarroel, M., Tarassenko, L., FitzGerald, J. J., & Antoniades, C. A. (2022). Longitudinal Monitoring of Progressive Supranuclear Palsy using Body-Worn Movement Sensors. Movement Disorders, 37(11), 2263–2271. https://doi.org/10.1002/mds.29194

Pereira, M. F., Buchanan, T., Höglinger, G. U., Bogdanovic, M., Tofaris, G., Prangnell, S., Sarangmat, N., FitzGerald, J. J., & Antoniades, C. A. (2022). Longitudinal changes of early motor and cognitive symptoms in progressive supranuclear palsy: The OxQUIP study. BMJ Neurology Open, 4(1), e000214. https://doi.org/10.1136/bmjno-2021-000214

De Vos, M., Prince, J., Buchanan, T., FitzGerald, J. J., & Antoniades, C. A. (2020). Discriminating progressive supranuclear palsy from Parkinson’s disease using wearable technology and machine learning. Gait & Posture, 77, 257–263. https://doi.org/10.1016/j.gaitpost.2020.02.007

FitzGerald, J. J., Lu, Z., Jareonsettasin, P., & Antoniades, C. A. (2018). Quantifying Motor Impairment in Movement Disorders. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00202